SOLUTION: Boston University Histogram of Non Symmetric Data Set Paper

[ad_1]
36 34 31 4 48 64 77 60 97 35 23 11 48 46 16 2 68 13 84 35 12 99 54 54 62 25 7 18 100 41 38 99 53 63 35 59 75 96 22 14 6 86 55 58 92 80 78 16 22 95 36 34 31 4 48 64 77 60 97 35 23 11 48 46 16 2 68 13 84 35 12 99 54 54 62 25 7 18 100 41 38 99 53 63 35 59 75 96 22 14 6 86 55 58 92 80 78 16 22 Column1 Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count Number of Bins Bin Width My Bins 48.92 4.229231609 48 35 29.9051835 894.32 -1.119007924 0.20101275 98 2 100 2446 50 4 24.5 2 26.5 51 75.5 100 124.5 95 2 26.5 51 75.5 100 124.5 More Frequency 1 14 11 12 12 0 0 Histogram Frequency Bin 15 10 5 Frequency 0 2 26.5 51 75.5 Bin 100 124.5 More Frequency 36 34 31 4 48 64 77 60 97 35 23 11 48 46 16 2 68 13 84 35 12 99 54 54 62 25 7 18 100 41 38 99 53 63 35 59 75 96 22 14 6 86 55 58 92 80 78 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 92 14 80 7 63 22 48 80 99 63 55 64 58 11 48 99 84 23 35 54 22 53 80 48 31 48 22 36 58 48 35 18 38 18 31 54 23 75 18 35 6 78 25 35 97 48 23 92 95 25 95 96 64 31 84 22 75 22 46 35 56.8 53.1 44.6 34.5 52.4 57 16 22 95 Sample 7 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 55 13 63 100 99 86 48 35 13 54 58 100 58 6 18 64 46 31 34 35 58 16 6 84 4 23 13 60 95 68 38 7 99 80 22 54 97 60 75 95 35 35 75 54 63 80 63 41 2 58 12 22 23 25 78 75 95 38 35 25 68 100 35 59 38 97 60 99 35 6 56.6 45 42.7 62.7 50.6 42.8 59.7 Sample 14 Sample 15 31 16 38 22 36 22 38 22 77 96 31 97 7 6 97 46 77 16 34 59 39.8 47 Sample Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample Mean 56.8 53.1 44.6 34.5 52.4 57 56.6 45 42.7 62.7 50.6 42.8 59.7 39.8 47 Sample Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample Mean Column1 56.8 53.1 44.6 34.5 52.4 57 56.6 45 42.7 62.7 50.6 42.8 59.7 39.8 47 Mean Standard Error Median Mode Standard Deviation Sample Variance Kurtosis Skewness Range Minimum Maximum Sum Count Number of Bins Bin Width 49.68666667 2.094229411 50.6 #N/A 8.110915631 65.78695238 -0.843927592 -0.160756615 28.2 34.5 62.7 745.3 15 4 7.05 Bin 34.5 41.55 48.6 55.65 62.7 69.75 34.5 41.55 48.6 55.65 62.7 69.75 More Frequency 1 1 5 3 4 1 0 Histogram Frequency My Bins 6 4 2 0 34.5 41.55 48.6 55.65 62.7 69.75 Bin stogram Frequency 69.75 More 36 34 31 4 48 64 77 60 97 35 23 11 48 46 16 2 68 13 84 35 12 99 54 54 62 25 7 18 100 41 38 99 53 63 35 59 75 96 22 14 6 86 55 58 92 80 78 Sample 1 Sample 2 77 4 34 75 46 46 35 84 75 12 16 16 75 7 11 48 62 54 53 41 35 22 2 4 36 2 95 86 41 77 42.36666667 Sample 3 16 92 48 35 2 34 99 55 55 14 64 99 95 99 80 78 75 16 54 68 86 63 16 75 58 16 54 22 38 11 Sample 4 11 46 16 48 48 97 97 35 96 78 16 35 48 48 31 77 78 18 16 75 46 2 68 99 48 35 96 59 16 7 Sample 5 4 99 18 6 80 63 58 25 48 99 35 92 18 58 54 92 25 36 22 86 92 7 68 16 4 75 48 99 97 35 Sample 6 11 54 36 77 35 14 78 99 97 64 41 16 16 38 23 62 86 7 62 38 35 35 22 18 48 62 99 100 23 84 22 63 84 99 84 12 100 68 12 60 35 11 77 75 64 54 53 18 38 86 25 6 14 54 62 35 48 77 7 77 53.9 49.66666667 51.96666667 49.33333333 50.66666667 16 22 95 Sample 7 Sample 8 13 100 4 54 68 96 2 13 23 36 75 18 59 46 68 31 16 31 22 53 35 14 54 80 2 63 35 34 46 36 Sample 9 25 35 14 35 95 31 54 60 97 97 16 53 63 54 23 95 41 46 11 48 48 18 96 38 25 18 18 36 35 54 Sample 10 Sample 11 Sample 12 Sample 13 48 22 23 11 84 54 11 35 7 54 12 54 31 60 77 4 35 7 16 14 62 2 99 46 62 4 16 48 84 48 7 22 2 80 59 64 35 59 12 84 62 96 78 48 16 18 11 12 11 11 64 84 7 68 62 54 60 54 14 22 100 22 22 13 22 84 48 23 99 77 86 36 36 14 77 77 80 59 99 77 53 31 64 23 46 35 99 41 4 63 75 54 35 84 78 46 75 48 4 86 41 11 31 95 7 54 54 4 78 59 16 48 59 68 63 54 12 58 97 59 68 18 95 78 7 36 41 77 35 46 16 31 92 14 46 41 12 55 99 12 13 48 58 4 54 25 14 63 11 63 40.9 45.96666667 37.66666667 42.53333333 53.66666667 51.76666667 42.4 Sample 14 Sample 15 68 38 16 63 48 63 97 64 22 41 16 7 35 59 53 38 35 64 80 60 60 16 22 62 80 34 2 14 4 18 92 54 35 48 22 35 14 35 97 7 11 80 48 18 6 54 11 97 25 2 14 11 75 75 54 4 100 58 12 31 42.63333333 40.83333333 Sample Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample Mean 42.36666667 53.9 49.66666667 51.96666667 49.33333333 50.66666667 40.9 45.96666667 37.66666667 42.53333333 53.66666667 51.76666667 42.4 42.63333333 40.83333333 Sample Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample Mean 42.36666667 53.9 49.66666667 51.96666667 49.33333333 50.66666667 40.9 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 45.96666667 37.66666667 42.53333333 53.66666667 51.76666667 42.4 42.63333333 Sample 15 40.83333333 Column1 Mean Standard Error Median Mode Standard Deviation Sample Variance 46.41777778 1.389453346 45.96666667 #N/A 5.381329668 28.95870899 Kurtosis Skewness Range Minimum Maximum Sum Count -1.554863828 0.001522764 16.23333333 37.66666667 53.9 696.2666667 15 Number of Bins Band Width 4 4.058333333 Bin 37.666667 41.725 45.783333 49.841667 53.9 57.958333 More Frequency 1 2 4 3 4 1 0 Histogram Frequency My Bins 37.66666667 41.725 45.78333333 49.84166667 53.9 57.95833333 6 4 2 0 Bin stogram Frequency 36 34 31 4 48 64 77 60 97 35 23 11 48 46 16 2 68 13 84 35 12 99 54 54 62 25 7 18 100 41 38 99 53 63 35 59 75 96 22 14 6 86 55 58 92 80 78 Sample 1 Sample 2 54 22 99 54 7 55 16 22 97 54 4 77 99 25 12 92 97 22 55 58 18 97 95 11 60 58 55 48 25 41 54 55 2 78 78 11 48 63 77 14 58 97 11 22 99 Sample 3 80 41 35 11 34 63 96 77 80 86 34 53 58 12 4 36 38 59 14 62 53 80 41 80 22 62 96 31 86 16 68 78 25 12 11 78 63 16 35 78 34 31 92 99 25 Sample 4 22 53 23 55 92 53 46 99 34 100 4 64 97 55 60 25 92 55 86 41 36 100 6 31 64 86 22 46 48 18 22 99 35 48 60 100 16 95 80 60 75 53 68 59 7 Sample 5 95 46 53 68 31 63 35 54 75 48 97 6 35 53 35 97 92 63 63 77 35 16 35 41 99 62 38 18 23 92 54 35 75 99 38 80 86 80 18 22 53 53 34 60 16 7 96 78 84 16 2 78 34 77 48 7 55 31 86 92 16 35 13 22 35 86 36 18 36 97 14 99 53 35 22 75 68 99 63 59 36 14 77 11 2 95 58 96 16 4 16 22 95 99 54 22 41 68 77 34 34 46 36 80 55 35 78 53 75 99 99 18 16 100 25 23 97 48 22 62 7 16 75 54 18 63 35 80 62 54 55 92 63 62 64 36 60 4 2 86 41 54 77 99 7 75 63 54 35 6 75 11 59 95 22 95 100 95 99 34 62 92 25 99 38 16 99 14 35 64 4 53 62 84 99 48 58 48 75 48 35 7 60 80 2 6 4 99 13 78 53 55 59 53 96 84 99 23 75 35 60 99 95 46 16 59 14 16 4 38 22 99 14 68 99 22 53 25 100 18 55 38 18 35 100 48 95 16 68 22 80 95 6 6 78 7 18 95 25 75 78 16 41 100 34 23 99 86 22 99 35 48 75 48 58 13 99 25 59 11 22 99 100 31 80 58 75 18 34 78 80 92 36 12 95 18 78 25 63 22 97 68 35 46 63 14 54 22 41 92 78 2 12 99 22 60 99 34 38 99 34 35 46 46 86 23 53 86 54 7 6 11 16 12 97 16 59 22 58 63 6 13 18 46 31 16 75 6 53 11 41 41 100 80 35 100 25 96 46 75 36 62 86 12 60 97 13 23 14 48 4 58 99 7 22 62 23 77 55 12 95 99 25 35 14 35 80 60 52.41 52.36 52.78 53.85 46.43 52.41 52.36 52.78 53.85 46.43 Sample 6 Sample 7 77 99 35 16 11 54 48 16 13 22 7 23 23 7 14 48 6 23 55 68 80 31 55 35 55 92 62 55 92 60 2 97 34 7 63 58 38 35 77 78 100 14 23 35 41 Sample 8 99 35 100 25 77 92 77 35 16 6 35 13 41 95 16 16 35 77 48 63 64 31 12 38 59 16 96 92 14 25 80 95 38 48 41 95 35 34 92 68 6 31 53 7 38 Sample 9 60 99 92 60 92 22 11 84 25 46 96 58 13 4 55 99 38 48 14 96 25 48 78 97 35 68 99 2 80 96 75 96 78 22 58 18 22 22 2 12 35 22 58 48 22 Sample 10 100 23 77 99 38 16 77 54 59 35 54 22 35 78 100 2 86 16 14 63 35 35 48 23 86 60 63 18 80 16 99 16 100 41 16 53 22 35 23 55 99 16 4 64 41 Sample 11 16 35 80 63 86 97 77 16 80 48 55 59 80 6 34 78 48 41 58 48 54 23 77 78 78 59 86 35 96 55 99 78 59 22 22 2 35 95 22 60 78 59 96 12 64 Sample 12 48 35 23 62 22 95 23 25 16 55 35 16 75 99 58 35 97 100 100 14 22 41 12 100 16 54 99 18 48 23 14 38 99 14 31 13 34 54 92 86 16 86 35 34 11 55 99 18 95 53 78 55 95 35 55 22 25 55 25 48 97 59 75 60 84 96 14 99 100 95 92 25 68 22 95 18 54 95 22 31 96 99 6 41 12 41 84 60 35 96 54 11 35 16 31 54 13 54 55 34 41 16 11 7 64 63 18 6 86 92 38 38 84 75 16 13 59 6 60 2 16 41 35 12 36 16 64 84 11 35 16 54 97 22 48 100 18 2 25 97 7 16 99 80 63 59 54 62 16 4 53 59 86 7 99 58 35 35 54 54 34 95 22 6 11 84 60 55 68 35 54 96 11 80 99 92 75 35 55 100 64 99 35 12 53 11 92 96 99 92 48 35 11 35 54 78 53 78 97 18 92 22 58 86 64 100 99 97 35 54 55 36 86 16 35 16 58 41 95 12 7 35 86 100 100 58 54 22 14 60 16 63 55 31 86 55 54 75 78 68 54 46 36 97 41 12 16 35 46 54 96 11 77 41 84 58 48 54 99 100 48 63 54 80 48 99 99 95 54 77 54 86 35 22 11 99 86 100 58 60 55 22 35 95 78 35 22 11 60 62 55 14 35 60 97 6 78 36 23 35 48 12 4 55 13 35 14 18 95 48 97 34 11 54 86 7 96 34 2 75 31 35 13 16 18 78 77 35 22 99 48 6 16 68 11 2 46 22 34 12 54 64 2 11 48 68 100 14 48 68 62 7 53 54 35 36 60 64 4 63 92 25 36 22 86 31 46 92 58 22 54 12 99 99 78 95 36 2 46 4 14 95 54 35 62 60 2 54 48 16 84 13 62 78 77 75 25 35 100 48 48 22 6 14 35 41 35 63 7 48 84 35 48 22 64 11 12 60 53 31 99 55 35 86 11 31 62 96 16 38 78 23 78 60 23 77 22 53 6 99 53 77 25 13 23 34 92 41 92 35 75 22 41 11 48 62 6 14 38 53 41 59 95 96 58 34 35 75 53 95 58 86 35 38 99 42.51 51.22 54.01 54.81 47.74 46.61 54.27 42.51 51.22 54.01 54.81 47.74 46.61 54.27 Sample 13 Sample 14 11 13 48 95 58 36 54 68 4 86 96 59 100 36 86 34 75 53 58 16 41 14 23 77 6 77 35 7 34 95 6 96 86 14 16 22 96 55 99 12 41 80 18 99 78 Sample 15 54 13 77 35 55 68 38 55 16 46 41 60 99 68 97 54 35 12 68 53 13 4 23 35 92 11 97 84 23 64 78 2 23 99 6 7 86 84 48 59 63 78 18 22 31 48 36 59 99 12 86 22 54 35 23 48 99 14 96 14 59 53 41 48 13 95 4 95 95 36 38 38 55 86 7 77 64 11 62 31 53 16 36 12 38 23 22 35 60 38 Sample Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 Sample 15 Sample Mean 52.41 52.36 52.78 53.85 46.43 42.51 51.22 54.01 54.81 47.74 46.61 54.27 46.78 46.72 53.26 63 4 58 100 22 23 55 31 35 16 35 54 14 100 63 11 22 22 84 58 55 36 6 6 63 78 59 35 4 14 95 41 34 95 14 54 12 53 2 41 31 12 75 99 35 80 12 60 48 80 2 25 18 25 16 63 4 75 86 54 68 92 58 60 31 77 11 55 41 59 12 48 92 22 54 11 80 22 14 55 2 13 75 16 11 58 80 36 16 92 54 99 14 11 41 96 54 99 68 35 48 2 78 48 68 75 54 75 41 77 38 84 53 99 84 60 96 16 99 22 58 62 68 25 60 59 38 16 48 53 97 68 75 54 35 77 16 100 54 54 54 6 55 77 84 46 6 46 34 54 62 48 22 22 84 36 55 54 77 54 54 60 23 78 59 46.78 46.72 53.26 46.78 46.72 53.26 Sample Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample Mean Column1 52.41 52.36 52.78 53.85 46.43 42.51 51.22 Mean Standard Error Median Mode Standard Deviation Sample Variance 50.384 0.994875824 52.36 #N/A 3.853137497 14.84666857 Sample 8 Sample 9 Sample 10 Sample 11 Sample 12 Sample 13 Sample 14 54.01 54.81 47.74 46.61 54.27 46.78 46.72 Kurtosis Skewness Range Minimum Maximum Sum Count -0.901620752 -0.618619168 12.3 42.51 54.81 755.76 15 Sample 15 53.26 Number of Bins Bin Width 4 3.075 Bin 42.51 45.585 48.66 51.735 54.81 57.885 More Frequency 1 0 5 1 8 0 0 Histogram Frequency My Bins 42.51 45.585 48.66 51.735 54.81 57.885 10 5 0 Bin stogram Frequency Sample Intercoincidence Article for Non-Symmetric Axioms Set Replace anything notable in red delay your results. Section I: Histogram of Non-Symmetric Axioms Set Histogram of Non -Symmetric Axioms Set μ = 44.3 (from feeling stats) σ = 27.5 (from feeling stats) Histogram Frequency 20 15 10 5 Frequency 0 4 27 50 73 96 119 More Bin Section II: Calculations for Non-Symmetric Axioms Set Mean of Axioms Set: μ = 44.3 (from Section I) Standard Failure of Axioms Set: σ = 27.5 (from Section I) Calculated Average of Specimen Instrument (samples of extent 10, 30, 100): μx̅ = μ = 44.3 Calculated Plummet Failure of Specimen Instrument (samples of extent 10) : σx̅ = σ 𝟐𝟕.𝟓 = = √n √10 8.7 Calculated Plummet Failure of Specimen Instrument (samples of extent 30) : σx̅ = σ √n 5.0 Calculated Plummet Failure of Specimen Instrument (samples of extent 100) : σx̅ = = 𝟐𝟕.𝟓 = √30 σ 𝟐𝟕.𝟓 = √n √100 = 2.8 Section III: Histograms of Specimen Instrument and Objective and Congenial Statistics of Specimen Instrument for NonSymmetric Axioms Set Histogram of Specimen Instrument for Samples of Extent 10: Actual Statistics (from feeling stats): μx̅ = 41.3 σx̅ = 7.2 Frequency Histogram 8 6 4 2 0 Frequency Calculated Statistics (from Section II): μx̅ = 44.3 σx̅ = 8.7 Bin Histogram of Specimen Instrument for Samples of Extent 30: Actual Statistics (from feeling stats): μx̅ = 45.9 σx̅ = 5.9 Frequency Histogram 8 6 4 2 0 Frequency Calculated Statistics (from Section II): μx̅ = 44.3 σx̅ = 5.0 Bin Histogram of Specimen Instrument for Samples of Extent 100: Actual Statistics (from feeling stats): μx̅ = 44.1 σx̅ = 2.3 Frequency Histogram 8 6 4 2 0 Frequency Bin Calculated Statistics (from Section II): μx̅ = 44.3 σx̅ = 2.8 Section IV: Discussion of the Central Limit Theorem for Non-Symmetric Axioms Sets State the Central Limit Theorem for non-symmetric axioms sets. Include the equations from the Central Limit Theorem for μx̅ and σx̅ . See Topic 10 Nursing Dissertation notes for a unobstructed proposition of the Central Limit Theorem. Section V: Discussion of Results for Non-Symmetric Axioms Set Based on the non-symmetric mould of your population histogram (histogram of axioms set), do the moulds of your three sampling distributions (histograms of specimen instrument) agree to the Central Limit Theorem? Based on the non-symmetric mould of your population histogram (histogram of axioms set), do the objective statistics (the instrument and plummet failures) of your three sampling distributions agree to the Central Limit Theorem? Section VI: Discussion of Unforeseen Results for Non-Symmetric Axioms Set Discuss any results in Section V that are not predicted by the Central Limit Theorem. Give at smallest two practicable reasons for unforeseen results. Symmetry Article – Instructions For this article, which is rate 45 points (9% of your ultimate pace in ILS 4430), you earn investigate intercoincidence in the province of statistics. Specifically, you earn con-over the intercoincidence of sampling distributions of specimen instrument as is predicted by the Central Limit Theorem. I approve that you use conciliateing that I have posted to Ulearn for Topics 9 and 10 as a relation for your article. The Central Limit theorem is discussed in component in my accomplished Nursing Dissertation notes for Topic 10. Your article should be written in six sections. The six sections earn be rate 42 points. The ultimate 3 points earn be awarded simply to articles that are systematic and polite written. If your axioms set is non-symmetric, paste your results into a observation of my “Sample Intercoincidence Article – Nonsymmetric” and thrive the plan under for non-symmetric axioms sets. If your axioms set is symmetric, paste your results into a observation of my “Sample Intercoincidence Article – Symmetric” and thrive the plan under for symmetric axioms sets. Outline of Intercoincidence Article for Non-Symmetric Axioms Sets Section I: Histogram of Non-Symmetric Axioms Set (4 Points) Present the histogram, the average, and the plummet failure (μ and σ) of your non-symmetric axioms set. The average and plummet failure are listed in the feeling statistics post in the “Histogram of Data Set” subterfuge of your Excel workbook. Section II: Calculations for Non-Symmetric Axioms Set (8 Points) Use the equations fond by the Central Limit Theorem (μx̅ = μ and σx̅ = σ ) √n and the average and plummet failure of your axioms set to number the average of the specimen instrument, μx̅ , and the plummet failure of the specimen instrument, σx̅ , for specimens of extent 10, 30 and 100. Section III: Histograms of Specimen Instrument and Objective and Congenial Statistics of Specimen Instrument for NonSymmetric Axioms Set (12 points) Present the histogram of your specimen instrument, the objective average and the objective plummet failure of your specimen instrument (from the feeling statistics post in the selfsame subterfuge of your Excel workbook), and the numberd average and the numberd plummet failure of your specimen instrument (from Section II of this article) for your specimen instrument of specimens of extent 10, 30, and 100. Use the class μx̅ for your objective instrument and σx̅ for your objective plummet failures. Section IV: Discussion of the Central Limit Theorem for Non-Symmetric Axioms Sets (6 points) State the Central Limit Theorem for non-symmetric axioms sets. Include the equations from the Central Limit Theorem for μx̅ and σx̅ . See Topic 10 Nursing Dissertation notes for a unobstructed proposition of the Central Limit Theorem. Section V: Discussion of Results for Non-Symmetric Axioms Set (6 points) Based on the nonsymmetric mould of your population histogram (histogram of axioms set), do the moulds of your three sampling distributions (histograms of specimen instrument) agree to the Central Limit Theorem? Based on the nonsymmetric mould of your population histogram (histogram of axioms set), do the objective statistics (the instrument and plummet failures) of your three sampling distributions agree to the Central Limit Theorem? Section VI: Discussion of Unforeseen Results for Non-Symmetric Axioms Set (6 points) Discuss any of your results in Section V that were not predicted by the Central Limit Theorem. Give at smallest two practicable reasons for unforeseen results. Outline of Intercoincidence Article for Symmetric Axioms Sets Section I: Histogram of Symmetric Axioms Set (4 Points) Present the histogram, the average, and the plummet failure (μ and σ) of your symmetric axioms set. The average and plummet failure are listed in the feeling statistics post in the “Histogram of Data Set” subterfuge of your Excel workbook. Section II: Calculations for Symmetric Axioms Set (8 Points) Use the equations fond by the Central Limit Theorem (μx̅ = μ and σx̅ = σ ) √n and the average and plummet failure of your symmetric axioms set to number the average of the specimen instrument, μx̅ , and the plummet failure of the specimen instrument, σx̅ , for specimens of extent 10, 30 and 100. Section III: Histograms of Specimen Instrument and Objective and Congenial Statistics of Specimen Instrument for Symmetric Axioms Set (12 points) Present the histogram of your specimen instrument, the objective average and the objective plummet failure of your specimen instrument (from the feeling statistics post in the selfsame subterfuge of your Excel workbook), and the numberd average and the numberd plummet failure of your specimen instrument (from Section II of this article) for your specimen instrument of specimens of extent 10, 30, and 100. Use the class μx̅ for your objective instrument and σx̅ for your objective plummet failures. Section IV: Discussion of the Central Limit Theorem for Symmetric Axioms Sets (6 points) State the Central Limit Theorem for symmetric axioms sets. Include the equations from the Central Limit Theorem for μx̅ and σx̅ . See Topic 10 Nursing Dissertation notes for a unobstructed proposition of the Central Limit Theorem. Section V: Discussion of Results for Symmetric Axioms Set (6 points) Based on the symmetric mould of your population histogram (histogram of axioms set), do the moulds of your three sampling distributions (histograms of specimen instrument) agree to the Central Limit Theorem? Based on the symmetric mould of your population histogram (histogram of axioms set), do the objective statistics (the instrument and plummet failures) of your three sampling distributions agree to the Central Limit Theorem? Section VI: Discussion of Unforeseen Results for Symmetric Axioms Set (6 points) Discuss any of your results in Section V that were not predicted by the Central Limit Theorem. Give at smallest two practicable reasons for unforeseen results. ...
Purchase counterpart to see full attachment

[ad_2]
Source integrate